MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QÂNTICO DE GRACELI


                                           - [   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]








                                           - [   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




Uma estatística quantica, no contexto da mecânica quântica e no da mecânica estatística, é a descrição de como a energia de cada um dos entes unitários constituintes de um ensemble está distribuida, dada uma energia total E constante, sob a restrição de que:

  1. a energia passa a ser quantizada;
  2. as partículas objeto de estudo passam a ser indistinguíveis.

Isso é feito expressando-se as probabilidades relativas de uma partícula com energia 

De modo clássico, a probabilidade é dada por:

onde

é a chamada função de partição

Nos casos quanticos, o que muda é a questão da quantização do espaço de fase, o que impõe um "volume" mínimo de célula possível nesse espaço.


                                     

Comments

Popular posts from this blog